Useful for development or generating easily reproducible examples
Usage
generate_random_ts(
n = 1,
lengths = 36,
starts = 1988,
frequencies = 12,
ranges_min = -1,
ranges_max = 1,
shifts = 0,
ts_names = sprintf("ts%d", 1:n),
seed = 30042018,
random_NAs = FALSE,
random_NA_proportions = 0.1,
normally_distributed = FALSE,
normal_means = 0,
normal_sds = 1,
frequency_shifts = FALSE,
frequency_shift_after = 0.5
)
Arguments
- n
The number of ts objects to generate
- lengths
The lengths of the time series
- starts
The start points of the time series in single number notation (e.g. 1990.5)
- frequencies
The frequencies of the time series
- ranges_min
The minimum values of the time series (if normally_distributed == FALSE)
- ranges_max
The maximum values of the time series (if normally_distributed == FALSE)
- shifts
The shifts of time series values per series
- ts_names
The names of the ts objects in the resulting list
- seed
The random seed to be used
- random_NAs
Whether or not to introcude NA values at random positions in the ts
- random_NA_proportions
The fraction of values to be replaced with NAs if random_NAs is TRUE for the series
- normally_distributed
Use normal distribution instead of uniform
- normal_means
The means to use for normal distribution. Ignored unless normally_distributed is set to TRUE.
- normal_sds
The sds to use for normal distribution. Ignored unless normally_distributed is set to TRUE.
- frequency_shifts
Introduce frequency shifts (from 4 to 12) in the ts
- frequency_shift_after
After what fraction of the ts to shift frequencies
Details
Except for n and ts_names, all parameters accept either a single value or a vector of values. If a single value is supplied, that value is used for all time series being generated. If a vector is supplied, its values will be used for the corresponding series (e.g. starts[1] is used for the first series, starts[2] for the second and so on). Vectors are recycled if n is larger than their length.
If a ts_names vector is supplied, it must have length n and must not contain duplicates.
Examples
generate_random_ts()
#> $ts1
#> Jan Feb Mar Apr May
#> 1988 0.893485502 -0.688892365 -0.229749839 -0.922924874 0.124839254
#> 1989 0.967893334 -0.594695907 0.322527747 0.496914903 0.727370868
#> 1990 0.804336180 -0.842539105 0.546138290 0.177073403 0.396821795
#> Jun Jul Aug Sep Oct
#> 1988 -0.120733925 -0.624176192 0.020836985 -0.608169273 -0.298081449
#> 1989 0.758888437 -0.744613007 0.377339070 -0.925579273 -0.484392250
#> 1990 0.684014794 0.912440008 -0.040721069 -0.003143072 0.942819356
#> Nov Dec
#> 1988 -0.189186306 0.227694534
#> 1989 0.989371605 0.172056411
#> 1990 0.666346054 0.357420872
#>
generate_random_ts(n = 3, ranges_min = c(-10, 0, 10), ranges_max = 20, starts = 2011)
#> $ts1
#> Jan Feb Mar Apr May Jun
#> 2011 18.4022825 -5.3333855 1.5537524 -8.8438731 6.8725888 3.1889911
#> 2012 19.5184000 -3.9204386 9.8379162 12.4537235 15.9105630 16.3833266
#> 2013 17.0650427 -7.6380866 13.1920743 7.6561010 10.9523269 15.2602219
#> Jul Aug Sep Oct Nov Dec
#> 2011 -4.3626429 5.3125548 -4.1225391 0.5287783 2.1622054 8.4154180
#> 2012 -6.1691951 10.6600861 -8.8836891 -2.2658838 19.8405741 7.5808462
#> 2013 18.6866001 4.3891840 4.9528539 19.1422903 14.9951908 10.3613131
#>
#> $ts2
#> Jan Feb Mar Apr May Jun
#> 2011 2.1075317 15.8001359 2.1949655 16.1399351 4.2801682 15.3437855
#> 2012 3.1571762 8.3932077 4.9065010 2.1472027 12.2637276 12.0804607
#> 2013 6.5450911 7.4986473 2.9009075 0.2139675 0.6966268 9.1141284
#> Jul Aug Sep Oct Nov Dec
#> 2011 17.8379738 14.2003324 2.0477883 12.9515194 9.7699304 18.4422302
#> 2012 11.6444259 11.6545310 9.7440705 14.7366532 16.6135129 7.7045680
#> 2013 19.4714438 13.1005719 18.0990729 11.3003898 10.2154826 12.3880003
#>
#> $ts3
#> Jan Feb Mar Apr May Jun Jul Aug
#> 2011 12.59638 19.75084 10.18752 17.32278 14.04742 12.70547 17.83230 18.62747
#> 2012 18.80858 17.06024 16.75530 17.97625 18.01916 14.56366 14.69751 19.99966
#> 2013 14.50377 16.79234 11.39901 15.97004 13.09541 18.14256 11.32945 17.80775
#> Sep Oct Nov Dec
#> 2011 18.57995 18.76937 17.00687 16.84999
#> 2012 10.16592 12.06091 17.78977 19.72673
#> 2013 17.27397 18.92210 14.20673 10.67758
#>